High dose 1,25(OH)2D3 inhibits osteoblast mineralization in vitro.
نویسندگان
چکیده
Vitamin D is essential for optimal calcium absorption needed for maintaining normal bone mineral density (BMD). Consequently, vitamin D-deficiency leads to poorly mineralized bone with diminished strength and load bearing capacity. Surprisingly, several animal and clinical studies have identified suppressive effects of high dose vitamin D supplementation on bone formation. These data suggest that while vitamin D is necessary for basal bone homeostasis, excessive concentrations may be detrimental to the skeleton. To further examine the direct effects of high dose vitamin D on the function of osteoblasts we differentiated primary osteoblast precursors and MC3T3 preosteoblastic cells, in the presence of supraphysiological doses of the active metabolite, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. In vitro osteoblast mineralization was potently suppressed by high dose 1,25(OH)2D3. To investigate the mechanism we used a bioassay to examine nuclear factor-κB (NF-κB) activation in MC3T3 cells. Although NF-κB agonists are generally potent inhibitors of osteoblast differentiation, surprisingly, 1,25(OH)2D3 dose-dependently suppressed, rather than stimulated, NF-κB activation. Interestingly, 1,25(OH)2D3 also suppressed Smad activation induced by the osteoblast commitment and differentiation factors transforming growth factor-β (TGF-β) and bone morphogenetic protein 2 (BMP2), which may account for the inhibitory activities of 1,25(OH)2D3 on mineralization. Our data suggest that vitamin D has complex pleiotropic effects on osteoblast signal transduction. As the net balance of high dose 1,25(OH)2D3 appears to be an inhibitory action on osteoblasts, our data suggest that the therapeutic value of vitamin D to maximize bone mass through indirect actions on calcium absorption may need to be carefully balanced with potential inhibitory direct effects on mineralizing cells. Our data suggest that indiscriminate over-dosing may be detrimental to bone formation and optimal concentrations need to be established for humans in vivo.
منابع مشابه
Primary Human Osteoblasts in Response to 25-Hydroxyvitamin D3, 1,25-Dihydroxyvitamin D3 and 24R,25-Dihydroxyvitamin D3
The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not o...
متن کامل1,25-dihydroxyvitamin D3 inhibits Osteocalcin expression in mouse through an indirect mechanism.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), a key regulator of mineral metabolism, regulates the expression of several genes that are expressed in osteoblasts. In particular, in rat and human osteoblasts, 1,25-(OH)2D3 increases the expression of Osteocalcin by interacting, through a hormone-receptor complex, with a vitamin D-responsive element present in the promoter of the genes. Here we show tha...
متن کاملRegulation of calcitonin gene transcription by vitamin D metabolites in vivo in the rat.
Calcitonin is secreted by the C cells of the thyroid in response to a raised serum calcium, and acts on bone to lower serum calcium. The C cells have specific receptors for the dihydroxymetabolite of vitamin D3, 1,25(OH)2D3. Moreover, calcitonin stimulates the synthesis of 1,25(OH)2D3 in the kidney. Parathyroid hormone (PTH), the third calciotrophic hormone, is also trophic to the renal synthes...
متن کاملMolecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells.
We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24-48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment...
متن کامل1,25-Dihydroxyvitamin D3 Receptors and Resistance: Implications in Rickets, Osteomalacia, and Other Conditions
Rickets or osteomalacia may arise from a defect anywhere in the bone mineralization pathway, which begins with the process of vitamin D activation, includes input of minerals to the bloodstream, and ends with accumulation of mineral crystals in osteoid. This chapter focuses upon the actions of vitamin D, and particularly the central role of the receptor for 1,25-dihydroxyvitamin D3 [1,25(OH)2D3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of molecular medicine
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2012